Nitrogen Membrane Module

Product Information Sheet

Parker hollow-fibre membrane modules produce nitrogen gas from compressed air to offer a costeffective, reliable and safe alternative to traditional cylinder or liquid nitrogen gas supplies.

Nitrogen is used as a clean, dry, inert gas primarily for removing oxygen from products and/or processes.

Parker modules can be built into a custom-made nitrogen generator or can be integrated with your (production) process to provide an on-demand, continuous source of nitrogen gas. Gas which can be used in a wide range of industries including food, beverage, pharmaceutical, laboratory, chemical, heat treatment, electronics, transportation, oil & gas, mining and marine.

Manufacture Information:

Parker Hannifin
Manufacturing Netherlands
(Filtration & Separation) B.V.
domnick hunter Filtration and
Separation Division

Oude Kerkstraat 4 4878 AA Etten-Leur The Netherlands

Tel: +31 (0)76 508 53 00 Fax: +31 (0)76 508 53 33 Email: pfsinfo@parker.com

Benefits:

 Less membrane modules needed per nitrogen system

More nitrogen per fibre is produced from Parker hollow-fibre membranes than any other in the world

Use of low pressure standard industrial compressor

- Energy savings
 Operation at a low pressure requires less energy
- Reduced CO₂ emissions
 No heater required to open polymer membrane structure, thus reducing the energy consumption
- Robust fibre
 Most tolerant fibre to particle contamination
- Large membrane diameter
 Lowest membrane module pressure drop

- Strong engineering plastic
 Life-expectancy of more than 10 years
- Factory membrane ageing, pre-delivery
 No performance decrease over time due to
 fibre ageing
- Quick start-up time
 Required nitrogen purity is produced instantly, no time needed to heat-up
- Flexible mounting arrangements
 Can be mounted horizontal or vertical
- Low noise operation
 Radiated noise generated by membrane technology is extremely low
- No maintenance required No user serviceable parts
- Small system footprint
 Less modules needed to produce nitrogen requirements

Describe 0/	Nitrogen¹ flow rate in m³/hr² (SCFM)²								
Purity %	99.5	99.0	98.0	97.0	96.0	95.0			
4 bar g	0.20	0.32	0.50	0.73	0.84	1.04			
(58 psi g)	(0.12)	(0.19)	(0.29)	(0.43)	(0.49)	(0.61)			
5 bar g	0.28	0.46	0.73	0.92	1.17	1.54			
(72.5 psi g)	(0.16)	(0.27)	(0.43)	(0.54)	(0.69)	(0.91)			
6 bar g	0.44	0.60	0.92	1.20	1.53	1.75			
(87 psi g)	(0.21)	(0.35)	(0.54)	(0.71)	(0.9)	(1.03)			
7 bar g	0.44	0.71	1.16	1.49	1.90	2.10			
(101.5 psi g)	(0.26)	(0.42)	(0.68)	(0.88)	(1.12)	(1.24)			
8 bar g	0.54	0.85	1.31	1.75	2.17	2.60			
(116 psi g)	(0.32)	(0.5)	(0.77)	(0.77)	(1.28)	(1.53)			
9 bar g	0.59	0.97	1.54	2.08	2.50	3.00			
(130.5 psi g)	(0.35)	(0.57)	(0.91)	(1.22)	(1.47)	(1.77)			
10 bar g	0.67	1.11	1.78	2.29	2.80	3.40			
(145 psi g)	(0.39)	(0.65)	(1.05)	(1.35)	(1.65)	(2)			
11 bar g	0.73	1.25	1.95	2.57	3.20	3.90			
(159.5 psi g)	(0.43)	(0.74)	(1.15)	(1.51)	(1.88)	(2.3)			
12 bar g	0.79	1.39	2.17	2.80	3.40	4.20			
(174 psi g)	(0.46)	(0.82)	(1.28)	(1.65)	(2)	(2.47)			
13 bar g	0.89	1.49	2.40	3.10	3.80	4.80			
(118.5 psi g)	(0.52)	(0.88)	(1.41)	(1.82)	(2.24)	(2.83)			

Describe 0/	Feed-air	te in m³/hr²	(SCFM) ²			
Purity %	99.5	99.0	98.0	97.0	96.0	95.0
4 bar g	1.9	1.8	1.9	2.3	2.3	2.5
(58 psi g)	(1.1)	(1.1)	(1.1)	(1.4)	(1.4)	(1.5)
5 bar g	2.2	2.3	2.6	2.7	3.0	3.6
(72.5 psi g)	(1.3)	(1.4)	(1.5)	(1.6)	(1.8)	(2.1)
6 bar g	2.5	2.8	3.2	3.4	3.9	4.0
(87 psi g)	(1.5)	(1.6)	(1.9)	(2)	(2.3)	(2.4)
7 bar g	3.0	3.3	3.9	4.2	4.8	4.7
(101.5 psi g)	(1.8)	(1.9)	(2.3)	(2.5)	(2.8)	(2.8)
8 bar g	3.5	3.8	4.4	4.9	5.4	5.8
(116 psi g)	(2.1)	(2.2)	(2.6)	(2.9)	(3.2)	(3.4)
9 bar g	3.7	4.3	5.1	5.8	6.3	6.7
(130.5 psi g)	(2.2)	(2.5)	(3)	(3.4)	(3.7)	(3.9)
10 bar g	4.1	4.8	5.9	6.3	7.0	7.5
(145 psi g)	(2.4)	(2.8)	(3.5)	(3.7)	(4.1)	(4.4)
11 bar g	4.4	5.3	6.3	7.1	7.9	8.5
(159.5 psi g)	(2.6)	(3.1)	(3.7)	(4.2)	(4.6)	(5)
12 bar g	4.6	5.9	7.0	7.7	8.4	9.3
(174 psi g)	(2.7)	(3.5)	(4.1)	(4.5)	(4.9)	(5.5)
13 bar g	5.5	6.4	7.9	8.7	9.5	10.7
(118.5 psi g)	(3.2)	(3.8)	(4.6)	(5.1)	(5.6)	(6.3)

Maximum pressure drop <0.1 bar.

Values between brackets are indicative imperial values

Ambient Conditions

Ambient temperature	+2°C to +50°C (+36°F to 122°F)
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Operating Conditions Feed-air

Maximum operating pressure	13.0 bar g (190 psi g)
Min. / Max. operating temperature	+2°C to +50°C (+36°F to 122°F)
Maximum oil vapour content	<0.01 mg/m³ (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed-air temperatures other than 20°C	Use bulletin S3.1.240 ³
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.240 ³

 $^{^{\}rm 3}\,$ Revision number may vary, make sure to use the most recent revision

Material

Housing	Steel
Tube	Aluminum
Coating (housing)	ESPC to RAL 7039 (Quartz Grey)
Coating (tube)	none

Services Available on Request

3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x W x D	758 x 80 x 63 mm (29.84" x 3.15" x 2.48")
Weight	3.2 kg (7.05 lb)
Connection feed-air	G ³ /8" female to ISO 228
Connection nitrogen enriched air	G ³ /8" female to ISO 228
Connection oxygen enriched air at atmospheric pressure	G ³ /8" female to ISO 228
Dimensional drawing	Refer to K3.1.344

Note

Parker membrane systems produce both nitrogen and oxygen enriched air. Nitrogen enriched air can cause suffocation and oxygen enriched air causes increased fire hazards. The oxygen enriched air is available at ambient pressure and pressure build-up of enriched oxygen at the outlet must be prevented, otherwise a serious (reversible) decrease in performance will result. The nitrogen enriched air produced should be treated as pressurised air.

For more information please contact your local sales office or visit www.parker.com

Parker has a continuous policy of product development and although the company reserves the right to change specifications, it attemps to keep customers informed of any alterations.

 $\hbox{@2011 Parker Hannifin Corporation. All rights reserved}.$

Catalogue: S3.1.245a 10/11

FILCO_®, spol. s r.o. Dvorská 464/103 CZ-503 11 Hradec Králové tel.: +420 495 436 233 info@filco.cz, www.filco.cz

¹ Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Remember that the value that is normally called the nitrogen content actually is the inert gas content.

² m³/hr refers to conditions at 1013 mbar(a) and 20°C

Nitrogen membrane module

Parker hollow-fibre membrane modules produce nitrogen gas from compressed air to offer a costeffective, reliable and safe alternative to traditional cylinder or liquid nitrogen gas supplies.

Nitrogen is used as a clean, dry, inert gas primarily for removing oxygen from products and/or processes.

Parker modules can be built into a custom-made nitrogen generator or can be integrated with your (production) process to provide an on-demand, continuous source of nitrogen gas. Gas which can be used in a wide range of industries including food, beverage, pharmaceutical, laboratory, chemical, heat treatment, electronics, transportation, oil & gas, mining and marine.

Manufacture information:

Parker Hannifin Manufacturing Netherlands (Filtration & Separation) B.V.

domnick hunter Filtration and Separation Division Oude Kerkstraat 4 4878 AA Etten-Leur The Netherlands

Tel: +31 (0)76 508 53 00 Fax: +31 (0)76 508 53 33 Email: pfsinfo@parker.com

Benefits:

- Less membrane modules needed per nitrogen system More nitrogen per fibre is produced from Parker hollowfibre membranes than any other in the world
- Use of low pressure standard industrial compressor
 No high pressure compressor needed to obtain required nitrogen flow
- Energy savings
 Operation at a low pressure requires less energy
- Reduced CO₂ emissions
 No heater required to open
 polymer membrane structure,
 thus reducing the energy
 consumption
- Robust fibre
 Most tolerant fibre to particle contamination
- Large membrane diameter Lowest membrane module pressure drop

- Strong engineering plastic Life-expectancy of more than 10 years
- Factory membrane ageing, pre-delivery
 No performance decrease over time due to fibre ageing
- Quick start-up time
 Required nitrogen purity
 is produced instantly, no time
 needed to heat-up
- Flexible mounting arrangements
 Can be mounted horizontal or vertical
- Low noise operation
 Radiated noise generated
 by membrane technology is extremely low
- No maintenance required No user serviceable parts
- Small system footprint
 Less modules needed to
 produce nitrogen requirements

Purity %		Nomi	inal nitro	gen¹ flow	rate in m	³ /hr² (SC	FM) ²		Purity %	nom	inal feed-a	ir consum	otion at nit	trogen flow	rate in m	³/hr² (SCI	FM) ²
runty /o	99.5	99	98	97	96	95	93	90	rancy /o	99.5	99	98	97	96	95	93	90
4 bar g (58 psi g)	0.90 (0,53)	1.44 (0,85)	2.20 (1,3)	2.91 (1,71)	3.63 (2,14)	4.36 (2,57)			4 bar g (58 psi g)	7.5 (4,4)	8.6 (5,1)	9.0 (5,3)	9.5 (5,6)	10.4 (6,1)	11.2 (6,6)		
5 bar g (72.5 psi g)	1.31 (0,77)	2.06 (1,21)	3.09 (1,82)	4.05 (2,38)	5.10 (3)	6.15 (3,62)			5 bar g (72.5 psi g)	10.1 (6)	11.5 (6,7)	11.7 (6,9)	12.6 (7,4)	14.0 (8,2)	15.2 (8,9)		
6 bar g (87 psi g)	1.71 (1)	2.67 (1,57)	3.99 (2,35)	5.18 (3,05)	6.56 (3,86)	7.94 (4,67)	11.3 (6,62)	18.2 (10,7)	6 bar g (87 psi g)	12.3 (7,2)	13.8 (8,1)	14.2 (8,4)	15.3 (9)	17.1 (10,1)	18.8 (11,1)	22.6 (13,3)	29.9 (17,6)
7 bar g (101.5 psi g)	2.11 (1,24)	3.27 (1,93)	4.90 (2,89)	6.46 (3,8)	8.12 (4,78)	9.78 (5,76)	13.8 (8,1)	22.1 (13)	7 bar g (101.5 psi g)	14.7 (8,6)	16.2 (9,6)	17.1 (10)	18.7 (11)	20.8 (12,2)	22.7 (13,4)	27.1 (16)	36.0 (21,2)
8 bar g (116 psi g)	2.50 (1,47)	3.87 (2,28)	5.82 (3,42)	7.73 (4,55)	9.67 (5,69)	11.6 (6,84)	16.4 (9,63)	26.6 (15,7)	8 bar g (116 psi g)	16.5 (9,7)	18.5 (10,9)	19.7 (11,6)	21.9 (12,9)	24.4 (14,4)	26.5 (15,6)	31.8 (18,7)	42.8 (25,2)
9 bar g (130.5 psi g)	2.81 (1,66)	4.46 (2,62)	6.77 (3,98)	9.03 (5,32)	11.27 (6,63)	13.5 (7,95)	19.0 (11,2)	30.8 (18,1)	9 bar g (130.5 psi g)	18.5 (10,9)	21.1 (12,4)	22.7 (13,4)	25.6 (15,1)	28.3 (16,7)	30.6 (18)	36.8 (21,6)	49.4 (29,1)
10 bar g (145 psi g)	3.12 (1,84)	4.94 (2,91)	7.64 (4,5)	10.3 (6,08)	12.9 (7,57)	15.4 (9,06)	21.7 (12,8)	35.6 (21)	10 bar g (145 psi g)	20.4 (12)	23.2 (13,7)	25.5 (15)	29.2 (17,2)	32.1 (18,9)	34.8 (20,5)	42.0 (24,7)	57.2 (33,7)
11 bar g (159.5 psi g)	3.41 (2)	5.46 (3,21)	8.49 (5)	11.5 (6,78)	14.5 (8,51)	17.3 (10,2)			11 bar g (159.5 psi g)	22.1 (13)	25.5 (15)	28.3 (16,6)	32.4 (19,1)	36.1 (21,2)	39.0 (23)		
12 bar g (174 psi g)	3.68 (2,16)	5.96 (3,51)	9.32 (5,49)	12.5 (7,38)	15.9 (9,35)	19.1 (11,2)			12 bar g (174 psi g)	24.1 (14,2)	27.9 (16,4)	31.3 (18,4)	35.5 (20,9)	39.8 (23,4)	43.3 (25,5)		
13 bar g (188.5 psi g)	3.93 (2,32)	6.45 (3,8)	10.1 (5,92)	13.6 (7,98)	17.1 (10,1)	20.9 (12,3)			13 bar g (188.5 psi g)	25.9 (15,3)	30.9 (18,2)	34.3 (20,2)	38.8 (22,8)	43.2 (25,5)	47.8 (28,1)		

Maximum pressure drop at Purity <0.2 bar

Values between brackets are indicative of imperial values

For purities >99.5% please contact Parker

Ambient Conditions

Ambient temperature	+2°C to +50°C (+36°F to 122°F)
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Operating Conditions Feed-air

Maximum operating pressure	13.0 bar g (190 psi g)
Min. / Max. operating temperature	+2°C / +50°C (+36°F to 122°F)
Maximum oil vapour content	<0.01 mg/m ³ (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed-air temperatures other than 20°C	Use bulletin S3.1.240 ³
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.240 ³

^{3.} Revision number may vary, make sure to use the most recent revision

Mechanical Design Housing

Design pressure	15 bar g ⁴ (217 psi g) ⁴
Design temperature	65°C ⁴ (149°F) ⁴

⁴ Membrane ambient and operating conditions are lower

Material

Housing	Aluminum
Coating	ESPC to RAL 7039 (Quartz Grey) Dry Film Thickness: 60 micron

Services Available on Request

3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x Ø D	782 x 114 mm (30.79" x 4.49")
Weight	5.5 kg (12.1 lb)
Connection feed-air	G3/4" female to ISO 228
Connection nitrogen enriched air	G3/4" female to ISO 228
Connection oxygen enriched air at atmospheric pressure enriched air	G 1" female to ISO 228
Dimensional drawing	Refer to K3.1.383

Note

Parker membrane systems produce both nitrogen and oxygen enriched air. Nitrogen enriched air can cause suffocation and oxygen enriched air causes increased fire hazards. The oxygen enriched air is available at ambient pressure and pressure build-up of enriched oxygen at the outlet must be prevented, otherwise a serious (reversible) decrease in performance will result. The nitrogen enriched air produced should be treated as pressurised air.

For more information please contact your local sales office or visit www.parker.com/dhfns

Parker has a continuous policy of product development and although the company reserves the right to change specifications, it attemps to keep customers informed of any alterations.

©2014 Parker Hannifin Corporation. All rights reserved.

Catalogue: S3.1.264_EN 01/14

¹ Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Remember that the value that is normally called the nitrogen content actually is the inert gas content.

 $^{^2}$ m $^3/hr$ refers to conditions at 1013 mbar(a) and 20 $^{\circ}\text{C}$

Nitrogen Membrane Module

Product Information Sheet

Parker hollow-fibre membrane modules produce nitrogen gas from compressed air to offer a costeffective, reliable and safe alternative to traditional cylinder or liquid nitrogen gas supplies.

Nitrogen is used as a clean, dry, inert gas primarily for removing oxygen from products and/or processes.

Parker modules can be built into a custom-made nitrogen generator or can be integrated with your (production) process to provide an on-demand, continuous source of nitrogen gas. Gas which can be used in a wide range of industries including food, beverage, pharmaceutical, laboratory, chemical, heat treatment, electronics, transportation, oil & gas, mining and marine.

Manufacture Information:

Parker Hannifin
Manufacturing Netherlands
(Filtration & Separation) B.V.
domnick hunter Filtration and
Separation Division

Oude Kerkstraat 4 4878 AA Etten-Leur The Netherlands

Tel: +31 (0)76 508 53 00 Fax: +31 (0)76 508 53 33 Email: pfsinfo@parker.com

Benefits:

 Less membrane modules needed per nitrogen system

More nitrogen per fibre is produced from Parker hollow-fibre membranes than any other in the world

Use of low pressure standard industrial compressor

- Energy savings
 Operation at a low pressure requires less energy
- Reduced CO₂ emissions
 No heater required to open polymer membrane structure, thus reducing the energy consumption
- Robust fibre
 Most tolerant fibre to particle contamination
- Large membrane diameter
 Lowest membrane module pressure drop

- Strong engineering plastic
 Life-expectancy of more than 10 years
- Factory membrane ageing, pre-delivery
 No performance decrease over time due to
 fibre ageing
- Quick start-up time
 Required nitrogen purity is produced instantly, no time needed to heat-up
- Flexible mounting arrangements
 Can be mounted horizontal or vertical
- Low noise operation
 Radiated noise generated by membrane technology is extremely low
- No maintenance required No user serviceable parts
- Small system footprint
 Less modules needed to produce nitrogen requirements

Describes 0/		Nitrogen flow rate in m³/hr² (SCFM)²				
Purity %	99.5	99.0	98.0	97.0	96.0	95.0
4 bar g	2.8	4.0	5.7	7.1	9.5	10.9
(58 psi g)	(1.6)	(2.4)	(3.4)	(4.2)	(5.6)	(6.4)
5 bar g	3.7	5.3	7.9	10.2	12.8	15.2
(72.5 psi g)	(2.2)	(3.1)	(4.6)	(6)	(7.5)	(8.9)
6 bar g	4.7	7.0	10.2	13.0	15.7	20.5
(87 psi g)	(2.8)	(4.1)	(6)	(7.7)	(9.2)	(12.1)
7 bar g	6.1	8.5	12.3	16.5	19.5	24.3
(101.5 psi g)	(3.6)	(5)	(7.2)	(9.7)	(11.5)	(14.3)
8 bar g	6.9	9.7	14.3	20.2	23.3	28.1
(116 psi g)	(4.1)	(5.7)	(8.4)	(11.9)	(13.7)	(16.5)
9 bar g	7.8	11.1	17.0	22.2	27.0	32.2
(130.5 psi g)	(4.6)	(6.5)	(10)	(13.1)	(15.9)	(19)
10 bar g	8.6	12.6	18.5	24.2	30.2	37.4
(145 psi g)	(5.1)	(7.4)	(10.9)	(14.2)	(17.8)	(22)
11 bar g	9.6	14.2	20.7	27.3	33.0	41.0
(159.5 psi g)	(5.7)	(8.4)	(12.2)	(16.1)	(19.4)	(24.1)
12 bar g	10.5	15.2	22.9	29.5	36.6	45.6
(174 psi g)	(6.2)	(8.9)	(13.5)	(17.4)	(21.5)	(26.8)
13 bar g	11.3	16.3	24.9	32.0	39.5	48.8
(118.5 psi g)	(6.7)	(9.6)	(14.7)	(18.8)	(23.2)	(28.7)

Danita 0/	Feed-air	Feed-air consumption at nitrogen flow rate in m³/hr² (SCFM)²				
Purity %	99.5	99.0	98.0	97.0	96.0	95.0
4 bar g	21	21	22	22	26	27
(58 psi g)	(12)	(12)	(13)	(13)	(15)	(16)
5 bar g	24	26	29	31	34	36
(72.5 psi g)	(14)	(15)	(17)	(18)	(20)	(21)
6 bar g	29	33	36	38	41	48
(87 psi g)	(17)	(19)	(21)	(22)	(24)	(28)
7 bar g	36	38	41	48	50	56
(101.5 psi g)	(21)	(22)	(24)	(28)	(29)	(33)
8 bar g	38	42	47	56	58	63
(116 psi g)	(22)	(25)	(28)	(33)	(34)	(37)
9 bar g	44	48	55	62	67	72
(130.5 psi g)	(26)	(28)	(32)	(36)	(39)	(42)
10 bar g	50	56	61	68	75	84
(145 psi g)	(29)	(33)	(36)	(40)	(44)	(49)
11 bar g	51	60	66	74	80	91
(159.5 psi g)	(30)	(35)	(39)	(44)	(47)	(54)
12 bar g	57	65	76	83	92	103
(174 psi g)	(34)	(38)	(45)	(49)	(54)	(61)
13 bar g	66	72	85	92	101	113
(118.5 psi)	(39)	(42)	(50)	(54)	(59)	(67)

Maximum pressure drop at Purity≤5%: <0.2 bar
Maximum pressure drop at Purity>5%: 0.1 to 0.5 bar
Values between brackets are indicative of imperial values

For purities >99.5% please contact Parker

Ambient Conditions

Ambient temperature	+2°C to +50°C (+36°F to 122°F)
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Mechanical Design Housing

Design pressure	15 bar g ⁴ (217 psi g) ⁴
Design temperature	65°C ⁴ (149°F) ⁴

⁴ Membrane ambient and operating conditions are lower

Operating Conditions Feed-air

Maximum operating pressure	13.0 bar g (190 psi g)
Min. / Max. operating temperature	+2°C / +50°C (+36°F to 122°F)
Maximum oil vapour content	<0.01 mg/m³ (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Material

Housing	Aluminum
Coating	ESPC to RAL 7039 (Quartz Grey) Dry Film Thickness: 60 micron

Flow Rate Corrections

Nitrogen flow rate at feed-air temperatures other than 20°C	Use bulletin S3.1.240 ³
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.240 ³

^{3.} Revision number may vary, make sure to use the most recent revision

Services Available on Request

Material certificates EN10204-3.1 on housing material (for Stainless Steel only) 3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x Ø D	1655 x 114 mm (65.12" x 4.49")
Weight	6.8 kg (15 lb)
Connection feed-air	G ³ / ₄ " female to ISO 228
Connection nitrogen enriched air	G ³ / ₄ " female to ISO 228
Connection oxygen enriched air at atmospheric pressure	G 1" female to ISO 228
Dimensional drawing	Refer to K3.1.330

Note

Parker membrane systems produce both nitrogen and oxygen enriched air. Nitrogen enriched air can cause suffocation and oxygen enriched air causes increased fire hazards. The oxygen enriched air is available at ambient pressure and pressure build-up of enriched oxygen at the outlet must be prevented, otherwise a serious (reversible) decrease in performance will result. The nitrogen enriched air produced should be treated as pressurised air.

For more information please contact your local sales office or visit www.parker.com

Parker has a continuous policy of product development and although the company reserves the right to change specifications, it attemps to keep customers informed of any alterations.

©2011 Parker Hannifin Corporation. All rights reserved.

Catalogue: S3.1.243b 10/11

FILCO_®, spol. s r.o. Dvorská 464/103 CZ-503 11 Hradec Králové tel.: +420 495 436 233 info@filco.cz, www.filco.cz

¹ Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Remember that the value that is normally called the nitrogen content actually is the inert gas content.

² m³/hr refers to conditions at 1013 mbar(a) and 20°C

SmartFluxx SA1508SS

Nitrogen Membrane Module

Product Information Sheet

Parker hollow-fibre membrane modules produce nitrogen gas from compressed air to offer a costeffective, reliable and safe alternative to traditional cylinder or liquid nitrogen gas supplies.

Nitrogen is used as a clean, dry, inert gas primarily for removing oxygen from products and/or processes.

Parker modules can be built into a custom-made nitrogen generator or can be integrated with your (production) process to provide an on-demand, continuous source of nitrogen gas. Gas which can be used in a wide range of industries including food, beverage, pharmaceutical, laboratory, chemical, heat treatment, electronics, transportation, oil & gas, mining and marine.

Manufacture Information:

Parker Hannifin
Manufacturing Netherlands
(Filtration & Separation) B.V.
domnick hunter Filtration and
Separation Division

Oude Kerkstraat 4 4878 AA Etten-Leur The Netherlands

Tel: +31 (0)76 508 53 00 Fax: +31 (0)76 508 53 33 Email: pfsinfo@parker.com

Benefits:

 Less membrane modules needed per nitrogen system

More nitrogen per fibre is produced from Parker hollow-fibre membranes than any other in the world

Use of low pressure standard industrial compressor

- Energy savings
 Operation at a low pressure requires less energy
- Reduced CO₂ emissions
 No heater required to open polymer membrane structure, thus reducing the energy consumption
- Robust fibre
 Most tolerant fibre to particle contamination
- Large membrane diameter
 Lowest membrane module pressure drop

- Strong engineering plastic
 Life-expectancy of more than 10 years
- Factory membrane ageing, pre-delivery
 No performance decrease over time due to
 fibre ageing
- Quick start-up time
 Required nitrogen purity is produced instantly, no time needed to heat-up
- Flexible mounting arrangements

 Can be mounted horizontal or vertical
- Low noise operation
 Radiated noise generated by membrane technology is extremely low
- No maintenance required No user serviceable parts
- Small system footprint
 Less modules needed to produce nitrogen requirements

Purity %		Nitrogen¹ flow rate in m³/hr² (SCFM)²				
Purity %	99.5	99.0	98.0	97.0	96.0	95.0
4 bar g	2.8	4.0	5.7	7.1	9.5	10.9
(58 psi g)	(1.6)	(2.4)	(3.4)	(4.2)	(5.6)	(6.4)
5 bar g	3.7	5.3	7.9	10.2	12.8	15.2
(72.5 psi g)	(2.2)	(3.1)	(4.6)	(6)	(7.5)	(8.9)
6 bar g	4.7	7.0	10.2	13.0	15.7	20.5
(87 psi g)	(2.8)	(4.1)	(6)	(7.7)	(9.2)	(12.1)
7 bar g	6.1	8.5	12.3	16.5	19.5	24.3
(101.5 psi g)	(3.6)	(5)	(7.2)	(9.7)	(11.5)	(14.3)
8 bar g	6.9	9.7	14.3	20.2	23.3	28.1
(116 psi g)	(4.1)	(5.7)	(8.4)	(11.9)	(13.7)	(16.5)
9 bar g	7.8	11.1	17.0	22.2	27.0	32.2
(130.5 psi g)	(4.6)	(6.5)	(10)	(13.1)	(15.9)	(19)
10 bar g	8.6	12.6	18.5	24.2	30.2	37.4
(145 psi g)	(5.1)	(7.4)	(10.9)	(14.2)	(17.8)	(22)
11 bar g	9.6	14.2	20.7	27.3	33.0	41.0
(159.5 psi g)	(5.7)	(8.4)	(12.2)	(16.1)	(19.4)	(24.1)
12 bar g	10.5	15.2	22.9	29.5	36.6	45.6
(174 psi g)	(6.2)	(8.9)	(13.5)	(17.4)	(21.5)	(26.8)
13 bar g	11.3	16.3	24.9	32.0	39.5	48.8
(118.5 psi g)	(6.7)	(9.6)	(14.7)	(18.8)	(23.2)	(28.7)

Dit 0/	Feed-air	consumpt	onsumption at nitrogen flow rate in m³/hr² (SCFM)²			
Purity %	99.5	99.0	98.0	97.0	96.0	95.0
4 bar g	21	21	22	22	26	27
(58 psi g)	(12)	(12)	(13)	(13)	(15)	(16)
5 bar g	24	26	29	31	34	36
(72.5 psi g)	(14)	(15)	(17)	(18)	(20)	(21)
6 bar g	29	33	36	38	41	48
(87 psi g)	(17)	(19)	(21)	(22)	(24)	(28)
7 bar g	36	38	41	48	50	56
(101.5 psi g)	(21((22)	(24)	(28)	(29)	(33)
8 bar g	38	42	47	56	58	63
(116 psi g)	(22)	(25)	(28	(33)	(34)	(37)
9 bar g	44	48	55	62	67	72
(130.5 psi g)	(26)	(28)	(32)	(36)	(39)	(42)
10 bar g	50	56	61	68	75	84
(145 psi g)	(29)	(33)	(36)	(40)	(75)	(44)
11 bar g	51	60	66	74	80	91
(159.5 psi g)	(30)	(35)	(39)	(44)	(47)	(54)
12 bar g	57	65	76	83	92	103
(174 psi g)	(34)	(38)	(45)	(49)	(54)	(61)
13 bar g	66	72	85	92	101	113
(118.5 psi g)	(39)	(42)	(50)	(54)	(59)	(67)

Maximum pressure drop at Purity≤5%: <0.2 bar Maximum pressure drop at Purity>5%: 0.1 to 0.5 bar Values between brackets are indicative of imperial values

For purities >99.5% please contact Parker

Ambient Conditions

Ambient temperature	+2°C to +50°C (+36°F to 122°F)
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Mechanical Design Housing

Design pressure	15 bar g ⁴ (217 psi g) ⁴
Design temperature	65°C ⁴ (149°F) ⁴

⁴Membrane operating limits are lower

Operating Condtions Feed-air

Maximum operating pressure	13.0 bar g (190 psi g)
Min. / Max. operating temperature	+2°C to +50°C (+36°F to 122°F)
Maximum oil vapour content	<0.01 mg/m³ (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Material

Housing	Stainless Steel
Coating	None

Flow Rate Corrections

Nitrogen flow rate at feed-air temperatures other than 20°C	Use bulletin S3.1.240 ³
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.240 ³

³ Revision number may vary, make sure to use the most recent revision

Services Available on Request

Material certificates EN10204-3.1 on housing material (for Stainless Steel only) 3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x Ø D	1654 x 114 mm (65.12" x 4.49")
Weight	18 kg (40 lb)
Connection feed-air	G ³ / ₄ " female to ISO 228
Connection nitrogen enriched air	G ³ / ₄ " female to ISO 228
Connection oxygen enriched air at atmospheric pressure	G 1" female to ISO 228
Dimensional drawing	Refer to K3.1.330

Note

Parker membrane systems produce both nitrogen and oxygen enriched air. Nitrogen enriched air can cause suffocation and oxygen enriched air causes increased fire hazards. The oxygen enriched air is available at ambient pressure and pressure build-up of enriched oxygen at the outlet must be prevented, otherwise a serious (reversible) decrease in performance will result. The nitrogen enriched air produced should be treated as pressurised air.

For more information please contact your local sales office or visit www.parker.com

Parker has a continuous policy of product development and although the company reserves the right to change specifications, it attemps to keep customers informed of any alterations.

©2011 Parker Hannifin Corporation. All rights reserved.

Catalogue: S3.1.248b 10/11

FILCO_®, spol. s r.o. Dvorská 464/103 CZ-503 11 Hradec Králové tel.: +420 495 436 233 info@filco.cz, www.filco.cz

¹ Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Remember that the value that is normally called the nitrogen content actually is the inert gas content.

 $^{^2}$ m³/hr refers to conditions at 1013 mbar(a) and 20 $^{\circ}\text{C}$

SmartFluxx SA1508-SPT5

Nitrogen membrane module

Parker hollow-fibre membrane modules produce nitrogen gas from compressed air to offer a cost effective, reliable and safe alternative to traditional cylinder or liquid nitrogen gas supplies.

Nitrogen is used as a clean, dry, inert gas primarily for removing oxygen from products and/or processes.

Parker modules can be built into a custom-made nitrogen generator or can be integrated with your (production) process to provide an on-demand, continuous source of nitrogen gas. Gas which can be used in a wide range of industries including food, beverage, pharmaceutical, laboratory, chemical, heat treatment, electronics, transportation, oil & gas, mining and marine.

Manufacture information:

Parker Hannifin Manufacturing Netherlands

(Filtration & Separation) B.V.

domnick hunter Filtration and Separation Division Oude Kerkstraat 4 4878 AA Etten-Leur The Netherlands

Tel: +31 (0)76 508 53 00 Fax: +31 (0)76 508 53 33 Email: pfsinfo@parker.com

Benefits:

- Less membrane modules needed per nitrogen system
 - More nitrogen per fibre is produced from Parker hollow fibre membranes than any other in the world
- Use of low pressure standard industrial compressor
 No high pressure compressor needed to obtain required nitrogen
- Energy savings
 Operation at a low pressure requires less energy
- Reduced CO₂ emissions
 No heater required to open polymer membrane structure, thus reducing the energy consumption
- Robust fibre
 Most tolerant fibre to particle contamination
- Large membrane diameter Lowest membrane module pressure drop

- Strong engineering plastic Life-expectancy of more than 10 years
- Factory membrane ageing, pre-delivery No performance decrease over time due to fibre ageing
- Quick start-up time
 Required nitrogen purity is produced instantly, no time needed to heat-up
- Flexible mounting arrangements

 Can be mounted horizontal or vertical
- Low noise operation
 Radiated noise generated by membrane technology is extremely low
- No maintenance required No user serviceable parts
- Small system footprint
 Less modules needed to produce
 nitrogen requirements

Performance data

Purity %	Nom	Nominal nitrogen ¹ flow rate in m3/hr ² (SCFM) ²				
	99,5	99	98	97	96	95
4 bar g	2,8	4,0	5,7	7,1	9,5	10,9
(58 psi g)	(1,6)	(2,4)	(3,4)	(4,2)	(5,6)	(6,4)
5 bar g	3,7	5,3	7,9	10,2	12,8	15,2
(72.5 psi g)	(2,2)	(3,1)	(4,6)	(6)	(7,5)	(8,9)
6 bar g	4,7	7,0	10,2	13,0	15,7	20,5
(87 psi g)	(2,8)	(4,1)	(6)	(7,7)	(9,2)	(12,1)
7 bar g	6,1	8,5	12,3	16,5	19,5	24,3
(101.5 psi g)	(3,6)	(5)	(7,2)	(9,7)	(11,5)	(14,3)
8 bar g	6,9	9,7	14,3	20,2	23,3	28,1
(116 psi g)	(4,1)	(5,7)	(8,4)	(11,9)	(13,7)	(16,5)

Purity %	Nominal feed-air consumption at nitrogen flow rate in m3/hr ² (SCFM) ²					
	99,5	99	98	97	96	95
4 bar g	21	21	22	22	26	27
(58 psi g)	(12)	(12)	(13)	(13)	(15)	(16)
5 bar g	24	26	29	31	34	36
(72.5 psi g)	(14)	(15)	(17)	(18)	(20)	(21)
6 bar g	29	33	36	38	41	48
(87 psi g)	(17)	(19)	(21)	(22)	(24)	(28)
7 bar g	36	38	41	48	50	56
(101.5 psi g)	(21)	(22)	(24)	(28)	(29)	(33)
8 bar g	38	42	47	56	58	63
(116 psi g)	(22)	(25)	(28)	(33)	(34)	(37)

Ambient Conditions

Ambient temperature	+2°C to +60°C (+36°F to +140°F)
Ambient pressure	Atmospheric
Air quality	clean air without contaminants

Operating Conditions Feed-air

Maximum operating pressure	8.0 bar g (116 psi g)
Min. / Max. operating temperature	+2°C to +60°C (+36°F to +140°F)
Maximum oil vapour content	<0.01 mg/m3 (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C (68°F)	Use bulletin S3.1.274 ³
Feed-air consumption at feed-air temperatures other than 20°C (68°F)	Use bulletin S3.1.274 ³

³. Revision number may vary, make sure to use the most recent revision

Mechanical Design Housing

Design pressure	15 bar g (217 psi g) ⁴
Design temperature	65°C (149°F) ⁴

⁴ Membrane ambient and operating conditions are lower

Material

Housing	Aluminum
Coating	ESPC to RAL 7039 (Quartz Grey)
	Dry Film Thickness: 60 micron

Services Available on Request

Material certificates EN10204-3.1 on housing material (for Stainless Steel only)

3D model CAD STEP file

Weight, Dimensions, Connections and Part number

Dimensions H x Ø D	1654 x 114 mm (65.12" x 4.49")
Weight	6.8 kg (15 lb)
Connection feed-air	G3/4" female to ISO 228
Connection nitrogen enriched air	G3/4" female to ISO 228
Connection oxygen enriched air at atmospheric pressure	G 1" female to ISO 228
Dimensional drawing	Refer to K3.1.330
Part number	159.005760

Note

Parker membrane systems produce both nitrogen and oxygen enriched air. Nitrogen enriched air can cause suffocation and oxygen enriched air causes increased fire hazards. The oxygen enriched air is available at ambient pressure and pressure build-up of enriched oxygen at the outlet must be prevented, otherwise a serious (reversible) decrease in performance will result. The nitrogen enriched air produced should be treated as pressurised air.

For more information please contact your local sales office or visit www.parker.com

Parker has a continuous policy of product development and although the company reserves the right to change specifications, it attemps to keep customers informed of any alterations.

©2015 Parker Hannifin Corporation. All rights reserved.

Catalogue: S3.1.275 03/15

FILCO_®, spol. s r.o. Dvorská 464/103 CZ-503 11 Hradec Králové tel.: +420 495 436 233 info@filco.cz, www.filco.cz

Maximum pressure drop <0.2 bar (3 psi)

Values between brackets are indicative imperial values

¹ Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Remember that the value that is normally called the nitrogen content actually is the inert gas content.

² m3/hr (CFM) refers to conditions at 1013 mbar(a) (14.7 psi a) and 20°C (68°F)

SmartFluxx SA1508SS-SPT5

Nitrogen membrane module

Parker hollow-fibre membrane modules produce nitrogen gas from compressed air to offer a cost effective, reliable and safe alternative to traditional cylinder or liquid nitrogen gas supplies.

Nitrogen is used as a clean, dry, inert gas primarily for removing oxygen from products and/or processes.

Parker modules can be built into a custom-made nitrogen generator or can be integrated with your (production) process to provide an on-demand, continuous source of nitrogen gas. Gas which can be used in a wide range of industries including food, beverage, pharmaceutical, laboratory, chemical, heat treatment, electronics, transportation, oil & gas, mining and marine.

Manufacture information:

Parker Hannifin Manufacturing Netherlands (Filtration & Separation) B.V.

domnick hunter Filtration and Separation Division Oude Kerkstraat 4 4878 AA Etten-Leur The Netherlands

Tel: +31 (0)76 508 53 00 Fax: +31 (0)76 508 53 33 Email: pfsinfo@parker.com

Benefits:

- Less membrane modules needed per nitrogen system
 - More nitrogen per fibre is produced from Parker hollow fibre membranes than any other in the world
- Use of low pressure standard industrial compressor
 No high pressure compressor needed to obtain required nitrogen flow
- Energy savings
 Operation at a low pressure requires less energy
- Reduced CO₂ emissions
 No heater required to open polymer membrane structure, thus reducing the energy consumption
- Robust fibre
 Most tolerant fibre to particle contamination
- Large membrane diameter
 Lowest membrane module pressure drop

- Strong engineering plastic Life-expectancy of more than 10 years
- Factory membrane ageing, pre-delivery No performance decrease over time due to fibre ageing
- Quick start-up time
 Required nitrogen purity is produced instantly, no time needed to heat-up
- Flexible mounting arrangements
 Can be mounted horizontal or vertical
- Low noise operation
 Radiated noise generated by membrane technology is extremely low
- No maintenance required No user serviceable parts
- Small system footprint
 Less modules needed to produce
 nitrogen requirements

Performance data

Purity %	Nom	Nominal nitrogen ¹ flow rate in m3/hr ² (SCFM) ²							
	99,5	99,5 99 98 97 96 95							
4 bar g	2,8	4,0	5,7	7,1	9,5	10,9			
(58 psi g)	(1,6)	(2,4)	(3,4)	(4,2)	(5,6)	(6,4)			
5 bar g	3,7	5,3	7,9	10,2	12,8	15,2			
(72.5 psi g)	(2,2)	(3,1)	(4,6)	(6)	(7,5)	(8,9)			
6 bar g	4,7	7,0	10,2	13,0	15,7	20,5			
(87 psi g)	(2,8)	(4,1)	(6)	(7,7)	(9,2)	(12,1)			
7 bar g	6,1	8,5	12,3	16,5	19,5	24,3			
(101.5 psi g)	(3,6)	(5)	(7,2)	(9,7)	(11,5)	(14,3)			
8 bar g	6,9	9,7	14,3	20,2	23,3	28,1			
(116 psi g)	(4,1)	(5,7)	(8,4)	(11,9)	(13,7)	(16,5)			

Purity %	Nominal feed-air consumption at nitrogen flow rate in m3/hr ² (SCFM) ²					
-	99,5	99	98	97	96	95
4 bar g	21	21	22	22	26	27
(58 psi g)	(12)	(12)	(13)	(13)	(15)	(16)
5 bar g	24	26	29	31	34	36
(72.5 psi g)	(14)	(15)	(17)	(18)	(20)	(21)
6 bar g	29	33	36	38	41	48
(87 psi g)	(17)	(19)	(21)	(22)	(24)	(28)
7 bar g	36	38	41	48	50	56
(101.5 psi g)	(21)	(22)	(24)	(28)	(29)	(33)
8 bar g	38	42	47	56	58	63
(116 psi g)	(22)	(25)	(28)	(33)	(34)	(37)

Ambient Conditions

Ambient temperature	+2°C to +60°C (+36°F to +140°F)
Ambient pressure	Atmospheric
Air quality	clean air without contaminants

Operating Conditions Feed-air

Maximum operating pressure	8.0 bar g (116 psi g)
Min. / Max. operating temperature	+2°C to +60°C (+36°F to +140°F)
Maximum oil vapour content	<0.01 mg/m3 (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C (68°F)	Use bulletin S3.1.274 ³
Feed-air consumption at feed-air temperatures other than 20°C (68°F)	Use bulletin S3.1.274 ³

³. Revision number may vary, make sure to use the most recent revision

Mechanical Design Housing

Design pressure	15 bar g (217 psi g) ⁴
Design temperature	65°C (149°F) ⁴

⁴ Membrane ambient and operating conditions are lower

Material

Housing	Stainless Steel
Coating	None

Services Available on Request

Material certificates EN10204-3.1 on housing material (for Stainless Steel only)

3D model CAD STEP file

Weight, Dimensions, Connections and Part number

Dimensions H x Ø D	1654 x 114 mm (65.12" x 4.49")
Weight	18 kg (40 lb)
Connection feed-air	G3/4" female to ISO 228
Connection nitrogen enriched air	G3/4" female to ISO 228
Connection oxygen enriched air at atmospheric pressure	G 1" female to ISO 228
Dimensional drawing	Refer to K3.1.358
Part number	159.005761

Note

Parker membrane systems produce both nitrogen and oxygen enriched air. Nitrogen enriched air can cause suffocation and oxygen enriched air causes increased fire hazards. The oxygen enriched air is available at ambient pressure and pressure build-up of enriched oxygen at the outlet must be prevented, otherwise a serious (reversible) decrease in performance will result. The nitrogen enriched air produced should be treated as pressurised air.

For more information please contact your local sales office or visit www.parker.com

Parker has a continuous policy of product development and although the company reserves the right to change specifications, it attemps to keep customers informed of any alterations.

©2015 Parker Hannifin Corporation. All rights reserved.

FILCO_®, spol. s r.o. Dvorská 464/103 CZ-503 11 Hradec Králové tel.: +420 495 436 233 info@filco.cz, www.filco.cz

Maximum pressure drop <0.2 bar (3 psi)

Values between brackets are indicative imperial values

¹ Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Remember that the value that is normally called the nitrogen content actually is the inert gas content.

² m3/hr (CFM) refers to conditions at 1013 mbar(a) (14.7 psi a) and 20°C (68°F)

Nitrogen Membrane Module

Product Information Sheet

Parker hollow-fibre membrane modules produce nitrogen gas from compressed air to offer a costeffective, reliable and safe alternative to traditional cylinder or liquid nitrogen gas supplies.

Nitrogen is used as a clean, dry, inert gas primarily for removing oxygen from products and/or processes.

Parker modules can be built into a custom-made nitrogen generator or can be integrated with your (production) process to provide an on-demand, continuous source of nitrogen gas. Gas which can be used in a wide range of industries including food, beverage, pharmaceutical, laboratory, chemical, heat treatment, electronics, transportation, oil & gas, mining and marine.

Manufacture Information:

Parker Hannifin
Manufacturing Netherlands
(Filtration & Separation) B.V.
domnick hunter Filtration and
Separation Division

Oude Kerkstraat 4 4878 AA Etten-Leur The Netherlands

Tel: +31 (0)76 508 53 00 Fax: +31 (0)76 508 53 33 Email: pfsinfo@parker.com

Benefits:

 Less membrane modules needed per nitrogen system

More nitrogen per fibre is produced from Parker hollow-fibre membranes than any other in the world

Use of low pressure standard industrial compressor

- Energy savings
 Operation at a low pressure requires less energy
- Reduced CO₂ emissions
 No heater required to open polymer membrane structure, thus reducing the energy consumption
- Robust fibre
 Most tolerant fibre to particle contamination
- Large membrane diameter
 Lowest membrane module pressure drop

- Strong engineering plastic
 Life-expectancy of more than 10 years
- Factory membrane ageing, pre-delivery
 No performance decrease over time due to
 fibre ageing
- Quick start-up time
 Required nitrogen purity is produced instantly, no time needed to heat-up
- Flexible mounting arrangements
 Can be mounted horizontal or vertical
- Low noise operation
 Radiated noise generated by membrane technology is extremely low
- No maintenance required No user serviceable parts
- Small system footprint
 Less modules needed to produce nitrogen requirements

Density 0/		Nitrogen¹ flow rate in m³/hr²					
Purity %	99.5	99.0	98.0	97.0	96.0	95.0	
4 bar g	17	25	36	47	57	70	
(58 psi g)	(10)	(15)	(21)	(28)	(34)	(41)	
5 bar g	23	33	49	66	82	93	
(72.5 psi g)	(14)	(19)	(29)	(39)	(48)	(55)	
6 bar g	29	43	63	83	102	120	
(87 psi g)	(17)	(25)	(37)	(49)	(60)	(71)	
7 bar g	37	53	78	100	125	154	
(101.5 psi g)	(22)	(31)	(46)	(59)	(74)	(91)	
8 bar g	44	62	90	117	144	178	
(116 psi g)	(26)	(36)	(53)	(69)	(85)	(105)	
9 bar g	49	72	103	133	165	216	
(130.5 psi g)	(29)	(42)	(61)	(78)	(97)	(127)	

Purity %	Feed	Feed-air consumption at nitrogen flow rate in m³/hr²				
Purity %	99.5	99.0	98.0	97.0	96.0	95.0
4 bar g	127	126	135	145	155	169
(58 psi g)	(75)	(74)	(79)	(85)	(91)	(99)
5 bar g	144	155	171	194	216	218
(72.5 psi g)	(85)	(91)	(101)	(114)	(127)	(128)
6 bar g	170	191	214	239	261	276
(87 psi g)	(100)	(112)	(126)	(141)	(154)	(162)
7 bar g	202	223	258	281	315	348
(101.5 psi g)	(119)	(131)	(152)	(165)	(185)	(205)
8 bar g	232	255	293	323	361	399
(116 psi g)	(137)	(150)	(172)	(190)	(212)	(235)
9 bar g	264	298	335	369	413	485
(130.5 psi g)	(155)	(175)	(197)	(217)	(243)	(285)

Maximum pressure drop at Purity≤5%: ≤0.2 bar Maximum pressure drop at Purity>5%: > 0.1 to 0.5 bar Values between brackets are indicative imperial values"

Ambient Conditions

Ambient temperature	+2°C to +50°C (+36°F to 122°F)
Ambient pressure	atmospheric
Air quality	clean air without contaminants

Mechanical Design Housing

Design pressure	14 bar g ⁴ (203 psi g) ⁴
Design temperature	65°C ⁴ (149°F) ⁴

⁴Membrane operating limits are lower

Operating Conditions Feed-air

Maximum operating pressure	9.0 bar g (130.5 psi g)
Min. / Max. operating temperature	+2°C to +50°C (+36°F to 122°F)
Maximum oil vapour content	<0.01 mg/m ³ (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Material

Housing	Aluminum
Coating	ESPC to RAL 7039 (Quartz Grey) Dry Film Thickness: 60 micron

Flow Rate Corrections

Nitrogen flow rate at feed-air temperatures other than 20°C	Use bulletin S3.1.240 ³
Feed-air consumption at feed-air temperatures other than 20°C	Use bulletin S3.1.240 ³

³ Revision number may vary, make sure to use the most recent revision

Services Available on Request

3D model CAD STEP file

Weight, Dimensions and Connections

Dimensions H x Ø D	1740 x 280 mm (68.50" x 11.02")
Weight	46 kg (102 lb)
Connection feed-air	G 2 ¹ / ₂ " female to ISO 228
Connection nitrogen enriched air	G 2 ¹ / ₂ " female to ISO 228
Connection oxygen enriched air at atmospheric pressure	100mm (3.94") OD
Dimensional drawing	Refer to K3.1.339

Note

Parker membrane systems produce both nitrogen and oxygen enriched air. Nitrogen enriched air can cause suffocation and oxygen enriched air causes increased fire hazards. The oxygen enriched air is available at ambient pressure and pressure build-up of enriched oxygen at the outlet must be prevented, otherwise a serious (reversible) decrease in performance will result. The nitrogen enriched air produced should be treated as pressurised air.

For more information please contact your local sales office or visit www.parker.com

Parker has a continuous policy of product development and although the company reserves the right to change specifications, it attemps to keep customers informed of any alterations.

©2011 Parker Hannifin Corporation. All rights reserved.

Catalogue: S3.1.244c

FILCO_®, spol. s r.o. Dvorská 464/103 CZ-503 11 Hradec Králové tel.: +420 495 436 233 info@filco.cz, www.filco.cz

¹ Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Remember that the value that is normally called the nitrogen content actually is the inert gas content.

 $^{^2}$ m $^3/hr$ refers to conditions at 1013 mbar(a) and 20 $^\circ\text{C}$

For higher purities please contact Parker

SmartFluxx SA15020-SPT5

Nitrogen membrane module

Parker hollow-fibre membrane modules produce nitrogen gas from compressed air to offer a cost effective, reliable and safe alternative to traditional cylinder or liquid nitrogen gas supplies.

Nitrogen is used as a clean, dry, inert gas primarily for removing oxygen from products and/or processes.

Parker modules can be built into a custom-made nitrogen generator or can be integrated with your (production) process to provide an on-demand, continuous source of nitrogen gas. Gas which can be used in a wide range of industries including food, beverage, pharmaceutical, laboratory, chemical, heat treatment, electronics, transportation, oil & gas, mining and marine.

Manufacture information:

Parker Hannifin Manufacturing Netherlands (Filtration & Separation) B.V.

domnick hunter Filtration and Separation Division Oude Kerkstraat 4 4878 AA Etten-Leur The Netherlands

Tel: +31 (0)76 508 53 00 Fax: +31 (0)76 508 53 33 Email: pfsinfo@parker.com

Benefits:

- Less membrane modules needed per nitrogen system
 - More nitrogen per fibre is produced from Parker hollow fibre membranes than any other in the world
- Use of low pressure standard industrial compressor
 No high pressure compressor needed to obtain required nitrogen flow
- Energy savings
 Operation at a low pressure requires less energy
- Reduced CO₂ emissions
 No heater required to open polymer membrane structure, thus reducing the energy consumption
- Robust fibre
 Most tolerant fibre to particle contamination
- Large membrane diameter
 Lowest membrane module pressure drop

- Strong engineering plastic Life-expectancy of more than 10 years
- Factory membrane ageing, pre-delivery No performance decrease over time due to fibre ageing
- Quick start-up time
 Required nitrogen purity is produced instantly, no time needed to heat-up
- Flexible mounting arrangements
 Can be mounted horizontal or
 vertical
- Low noise operation
 Radiated noise generated by membrane technology is extremely low
- No maintenance required No user serviceable parts
- Small system footprint
 Less modules needed to produce nitrogen requirements

Purity %	Nominal nitrogen ¹ flow rate in m3/hr ² (SCFM) ²					
	99,5	99	98	97	96	95
4 bar g	17	25	36	47	57	70
(58 psi g)	(10)	(15)	(21)	(28)	(34)	(41)
5 bar g	23	33	49	66	82	93
(72.5 psi g)	(14)	(19)	(29)	(39)	(48)	(55)
6 bar g	29	43	63	83	102	120
(87 psi g)	(17)	(25)	(37)	(49)	(60)	(71)
7 bar g	37	53	78	100	125	154
(101.5 psi g)	(22)	(31)	(46)	(59)	(74)	(91)
8 bar g	44	62	90	117	144	178
(116 psi g)	(26)	(36)	(53)	(69)	(85)	(105)

Purity %	Nominal feed-air consumption at nitrogen flow rate in m3/hr 2 (SCFM)2					
	99,5	99	98	97	96	95
4 bar g	127	126	135	145	155	169
(58 psi g)	(75)	(74)	(79)	(85)	(91)	(99)
5 bar g	144	155	171	194	216	218
(72.5 psi g)	(85)	(91)	(101)	(114)	(127)	(128)
6 bar g	170	191	214	239	261	276
(87 psi g)	(100)	(112)	(126)	(141)	(154)	(162)
7 bar g	202	223	258	281	315	348
(101.5 psi g)	(119)	(131)	(152)	(165)	(185)	(205)
8 bar g	232	255	293	323	361	399
(116 psi g)	(137)	(150)	(172)	(190)	(212)	(235)

Maximum pressure drop <0.2 bar (3 psi)

Values between brackets are indicative imperial values

Ambient Conditions

Ambient temperature	+2°C to +60°C (+36°F to +140°F)
Ambient pressure	Atmospheric
Air quality	clean air without contaminants

Operating Conditions Feed-air

Maximum operating pressure	8.0 bar g (116 psi g)
Min. / Max. operating temperature	+2°C to +60°C (+36°F to +140°F)
Maximum oil vapour content	<0.01 mg/m3 (<0.01 ppm (w))
Particles	filtered at 0.01 µm cut off
Relative humidity	<100% (non condensing)

Flow Rate Corrections

Nitrogen flow rate at feed temperatures other than 20°C (68°F)	Use bulletin S3.1.274 ³
Feed-air consumption at feed-air temperatures other than 20°C (68°F)	Use bulletin S3.1.274 ³

³ Revision number may vary, make sure to use the most recent revision

Mechanical Design Housing

Design pressure	14 bar g ⁴ (203 psi g) ⁴
Design temperature	65°C ⁴ (149°F) ⁴

⁴ Membrane ambient and operating conditions are lower

Material

Housing	Aluminum
Coating	ESPC to RAL 7039 (Quartz Grey)
	Dry Film Thickness: 60 micron

Services Available on Request

3D model CAD STEP file

Weight, Dimensions, Connections and Part number

Dimensions H x Ø D	1740 x 280 mm (68.50" x 11.02")
Weight	46 kg (102 lb)
Connection feed-air	G2½" female to ISO 228
Connection nitrogen enriched air	G2½" female to ISO 228
Connection oxygen enriched air at atmospheric pressure	100 mm (3.94") OD
Dimensional drawing	Refer to K3.1.339
Part number	159.005759

Note

Parker membrane systems produce both nitrogen and oxygen enriched air. Nitrogen enriched air can cause suffocation and oxygen enriched air causes increased fire hazards. The oxygen enriched air is available at ambient pressure and pressure build-up of enriched oxygen at the outlet must be prevented, otherwise a serious (reversible) decrease in performance will result. The nitrogen enriched air produced should be treated as pressurised air.

For more information please contact your local sales office or visit www.parker.com

Parker has a continuous policy of product development and although the company reserves the right to change specifications, it attemps to keep customers informed of any alterations.

©2015 Parker Hannifin Corporation. All rights reserved.

Catalogue: S3.1.273 02/15

FILCO, spol. s r.o. Dvorská 464/103 CZ-503 11 Hradec Králové tel.: +420 495 436 233 info@filco.cz, www.filco.cz

¹ Parker membranes separate oxygen from pressurised air. The composition of the product is determined by measuring the residual oxygen content. The nitrogen content is calculated by subtracting the residual oxygen content from 100 %. Air is composed of nitrogen (78.1%), oxygen (20.9 %), Argon (0.9 %), CO₂ (0.03 %), and some trace inert gases. Remember that the value that is normally called the nitrogen content actually is the inert gas content.

² m3/hr (CFM) refers to conditions at 1013 mbar(a) (14.7 psi a) and 20°C (68°F)